Conclusão

A pesquisa buscou responder à questão: quais as contribuições do Ensino Desenvolvimental aliado à Investigação Matemática com a utilização do software Geogebra para a formação de conceitos matemáticos relativos ao cálculo de área e perímetro de figuras planas? O estudo se delimitou ao cálculo das áreas do quadrado, do retângulo e do triângulo, pois era um dos conteúdos previstos no cronograma letivo da professora regente da disciplina.

Alguns problemas surgiram para que a proposta fosse aplicada da forma como havia sido estruturada, mas foram contornados e a pesquisa se desenvolveu como o esperado. Um destes problemas foi a disponibilidade de aulas necessárias para que as atividades fossem aplicadas a contento. Outro entrave, um pouco mais grave, foi a estrutura do LIE, como foi mostrado na figura 10, estava completamente desorganizado, com os computadores todos desinstalados e sem acesso à internet. Foi necessário que o próprio pesquisador fizesse, após a reforma da sala, a instalação de todos os equipamentos. No entanto, a disposição e disponibilidade das professoras e coordenadoras responsáveis pelo LIE ajudaram a colocar o laboratório funcionando, antes que se iniciassem as aulas onde a aplicação da proposta seria realizada.

Mesmo com todas as dificuldades enfrentadas, a pesquisa mostrou um resultado satisfatório e alcançou os objetivos propostos. A participação dos alunos foi muito importante para se chegar a esse resultado, pois eles estiveram ativos e participativos durante todas as aulas, o que ajudou no desenvolvimento das atividades de estudo, permitindo realizá-las a contento. A análise dos dados confirmou nossas expectativas, mostrando que os alunos conseguiram se apropriarem dos conceitos por meio da proposta. Assim sendo, os alunos construíram seu próprio conhecimento por meio da interação com as atividades de estudo, com os colegas e com o professor/pesquisador.

O ensino da Matemática, que muitas vezes é desafiador para o professor, foi facilitado e implementado pela estrutura e organização das atividades de estudo. Estas atividades, relacionadas com o contexto do aluno e organizadas de forma que estimulassem os alunos a terem o desejo em aprender, fizeram sentido e foram internalizadas pelos alunos de forma que conseguiram aplicar os conceitos estudados em problemas específicos do seu cotidiano. Este fato é confirmado por Davydov, quando aponta que o aluno internaliza o conceito, conseguindo visualizá-lo e aplicá-lo para solucionar problemas onde estes conceitos são ferramentas que possuem significado no contexto social e científico.

Para que as atividades tenham estas características, a ação mediadora do professor é essencial, é ele quem organiza o processo de ensino-aprendizagem de forma que os alunos tenham a possibilidade de estarem autônomos durante a construção do conhecimento. Assim sendo, como citado anteriormente, Libâneo e Freitas (2006, p. 3) afirmam que:

A atividade mediatiza a relação entre o homem e a realidade objetiva. O homem não reage mecanicamente aos estímulos do meio, ao contrário, pela sua atividade, põe-se em contato com os objetos e fenômenos do mundo circundante, atua sobre eles e transforma-os, transformando também a si mesmo.

Vários fatores negativos estão diretamente ligados aos baixos resultados no processo de ensino-aprendizagem. Os alunos são afetados pela falta de investimentos na educação e em políticas públicas desconectadas com a realidade das escolas. Como disse Davydov (1988, p. 28), “se o ensino nas escolas vai contra a educação da intuição Matemática da criança (mais apropriada à realização de estruturas Matemáticas), tem fundamento afirmar que o ensino está mais apto a obstaculizar do que a desenvolver o raciocínio matemático do aluno”.

Para contribuir para a solução de problemas práticos como estes, fazendo com que os alunos consigam utilizar o objeto de estudo como ferramenta de resolução e formulem tais soluções de forma autônoma é que a proposta foi pensada, estruturada e aplicada. Formular atividades que venham se opor ao que está sendo trabalhado atualmente, sem escolha por parte do professor e também por parte dos alunos que, por sua vez, se contentam com o ensino que lhes é apresentado e exposto de forma inadequada para os tempos atuais.

A organização e estruturação das atividades com base no tripé Ensino Desenvolvimental, Investigação Matemática e o software Geogebra veio ao encontro do que Davydov espera de um processo de ensino-aprendizagem que levem os alunos a internalizarem os conceitos de forma que consigam aplicá-los em momentos distintos da escola.

O processo de apropriação leva o indivíduo à reprodução, em sua própria atividade, das capacidades humanas formadas historicamente. Durante a reprodução, a criança realiza uma atividade que é adequada (mas não idêntica) à atividade encarnada pelas pessoas nestas capacidades (DAVYDOV, 1988, p. 31).

Assim sendo, várias contribuições puderam ser identificadas durante a aplicação da proposta. O Ensino Desenvolvimental propiciou estruturar as atividades de estudo de forma que alavancassem o processo de ensino-aprendizagem de forma que os alunos sentissem o desejo de aprender, estando motivados a participarem das atividades propostas. O papel do professor como mediador de todo o processo possibilita uma melhor forma de conduzir as aulas, levando os alunos a estarem ativos durante o processo, facilitando a apropriação dos conceitos estudados.

As etapas propostas pela Investigação Matemática contribuíram efetivamente para o desenvolvimento das atividades, já que nortearam os procedimentos que o professor mediador teria que aplicar durante a realização das atividades por parte dos alunos e também, nas exposições e interrogações feitas durante as aulas.

O software matemático Geogebra foi essencial no momento da visualização simbólica dos cálculos efetuados pelos alunos no momento da contextualização, já que o software possibilita a criação de figuras planas quaisquer e os alunos demonstraram uma grande criatividade neste momento da aula. Além disso, foi importante no momento em que os cálculos dos tipos de triângulos foram demonstrados por meio de sua opção de mover os objetos. Consequentemente, mostrou aos alunos e à professora regente as potencialidades que a tecnologia informática proporciona, incentivando o uso de dispositivos de informática como instrumentos facilitadores do processo de ensino-aprendizagem.

Os resultados encontrados só foram possíveis pela integração destes recursos, o Ensino Desenvolvimental, a Investigação Matemática e o software Geogebra, haja vista que as bases metodológicas utilizadas propiciaram grandes vantagens na elaboração, aplicação e análise das atividades de estudo. Os processos de estruturação das atividades elencadas pelo Ensino Desenvolvimental levaram os alunos a participarem ativamente de todas as etapas das atividades, a Investigação Matemática possibilitou que o pesquisador tivesse o controle de todos os procedimentos necessários durante as aulas e o software Geogebra foi um dispositivo que auxiliou de forma prática e objetiva a realização das tarefas por parte dos alunos, mostrando que foi a escolha ideal para a realização das atividades pela sua dinamicidade e fácil manuseio, fatores que não são encontrados facilmente em um único software.

Com base nas análises realizadas em todo o processo de aplicação das atividades de estudo, se pode notar que os alunos conseguiram internalizar os conceitos estudados de forma participativa, criativa e estimulante. Cabe então, aos profissionais da Educação Matemática, novos estudos relacionados ao tripé que foi utilizado nesta proposta para que se tenham parâmetros para se comparar resultados de outros conteúdos, alunos com outras faixas etárias e realidades diferentes. Além disso, outras pesquisas podem ser realizadas aliando à Teoria do Ensino Desenvolvimental com outras tendências Matemáticas como, por exemplo, a Modelagem Matemática, a Etnomatemática e a História da Matemática.

A Teoria do Ensino Desenvolvimental proporciona várias possibilidades aos educadores, sua forma de estruturar as atividades de estudo pode ser utilizada por diversas áreas do conhecimento. Logo, o processo de ensino-aprendizagem da Matemática necessita de mais pesquisas realizadas no âmbito das escolas, mostrando aos professores que existem várias formas de estruturarem suas aulas de acordo com os conteúdos que serão estudados, levando os alunos a sentirem o desejo em aprender um conteúdo que lhes façam sentido e estejam motivados a estarem sempre buscando desenvolverem intelectualmente.